3D Garment Segmentation Based on Semi-supervised Learning Method ⋆
نویسندگان
چکیده
In this paper, we propose a semi-supervised learning method to simultaneous segmentation and labeling of parts in 3D garments. The key idea in this work is to analyze 3D garments using semi-supervised learning method which can label parts in various 3D garments. We first develop an objective function based on Conditional Random Field (CRF) model to learn the prior knowledge of garment components from a set of training examples. Then, we exploit an effective training method that utilizes JointBoost classifiers based on the co-analysis for garments. And we modify the JointBoost to automatically cluster the segmented components without requiring manual parameter tuning. The purpose of our method is to relieve the manual segmentation and labeling of components in 3D garment collections. Finally, the experimental results show the performance of our proposed method is effective.
منابع مشابه
A Hybrid 3D Learning-and-Interaction-based Segmentation Approach Applied on CT Liver Volumes
Medical volume segmentation in various imaging modalities using real 3D approaches (in contrast to sliceby-slice segmentation) represents an actual trend. The increase in the acquisition resolution leads to large amount of data, requiring solutions to reduce the dimensionality of the segmentation problem. In this context, the real-time interaction with the large medical data volume represents a...
متن کاملSemi-supervised 3D model multiple semantic automatic annotation
the purpose of annotation for 3D model is that it can automatically list the best suitable labels to describe the 3D models; it is an important part of the text-based 3D model retrieval. The existence of the semantic gap makes the result based on the similarity matching techniques needs to be improved. In order to improve the 3D model annotation performance using a large number of unlabeled sam...
متن کاملSemi-supervised Segmentation Using Multiple Segmentation Hypotheses from a Single Atlas
A semi-supervised segmentation method using a single atlas is presented in this paper. Traditional atlas-based segmentation suffers from either a strong bias towards the selected atlas or the need for manual effort to create multiple atlas images. Similar to semi-supervised learning in computer vision, we study a method which exploits information contained in a set of unlabelled images by mutua...
متن کاملSemi-automatic level set segmentation of liver tumors combining a spiral-scanning technique with supervised fuzzy pixel classification
In this paper, a specific method is presented to facilitate the semi-automatic segmentation of liver tumors and liver metastases in CT images. Accurate and reliable segmentation of tumors is essential for the follow-up of cancer treatment. The core of the algorithm is a level set method. The initialization is generated by a spiral-scanning technique based on dynamic programming. The level set e...
متن کاملSemi-supervised Learning for Mongolian Morphological Segmentation
Unlike previous Mongolian morphological segmentation methods based on large labeled training data or complicated rules concluded by linguists, we explore a novel semi-supervised method for a practical application, i.e., statistical machine translation (SMT), based on a low-resource learning setting, in which a small amount of labeled data and large amount of unlabeled data are available. First,...
متن کامل